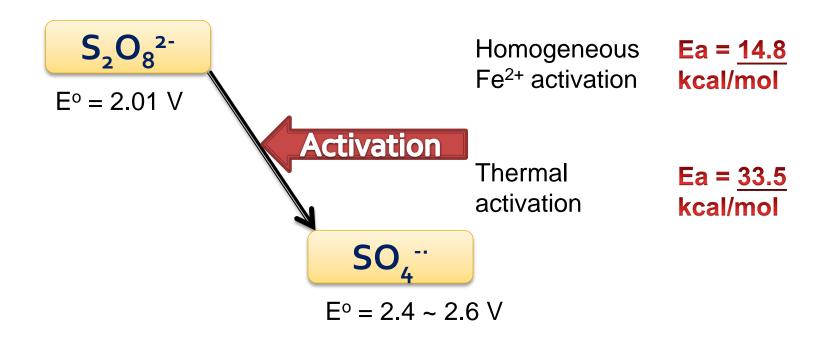
pH Effect on EDTA/Ferric Ion-Activated Persulfate Oxidation of Trichloroethylene in Batch Studies

Chenju Liang (cliang@dragon.nchu.edu.tw), Chiu-Fen Huang, and Chi-Chin Chen (National Chung Hsing University, Taichung City, Taiwan)

The ability of free ferrous ion-activated persulfate (S₂O₈²⁻) to generate sulfate radicals (SO₄⁻) for the oxidation of trichloroethylene (TCE) is limited by the scavenging of SO₄⁻ with excess Fe²⁺ and a quick conversion of Fe²⁺ to Fe³⁺. This study investigated the applicability of ethylene-diamine-tetra-acetic acid (EDTA) chelated Fe³⁺ in activating persulfate for the destruction of TCE in aqueous phase under pH 3, 7 and 10. Fe³⁺ and EDTA alone did not appreciably degrade persulfate. The presence of TCE in the EDTA/Fe³⁺ activated persulfate system can induce faster persulfate and EDTA degradation due to iron recycling to activate persulfate under a higher pH condition. Increasing the pH leads to increases in pseudo-first-rate constants for TCE, S₂O₈²⁻ and EDTA degradations, and Cl generation. Accordingly, the experiments at pH 10 with different EDTA/Fe³⁺ molar ratios indicated that a 1/1 ratio resulted in a remarkably higher degradation rate at the early stage of reaction as compared to results by other ratios. Higher persulfate dosage under the EDTA/Fe³⁺ molar ratio of 1/1 resulted in greater TCE degradation rates. However, increases in persulfate concentration may also lead to an increase in the rate of persulfate consumption.

pH Effect on EDTA/Fe³⁺Activated Persulfate Oxidation of TCE in Batch Studies


Chenju Liang, C.-F. Huang, C.-C. Chen

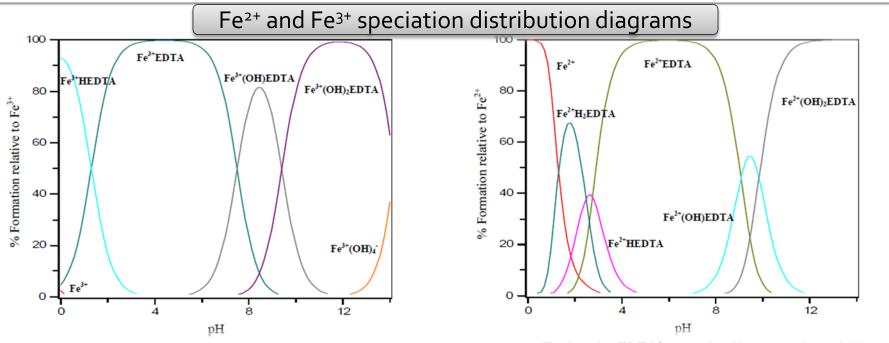
Associate Professor, D.Eng.

Dept. of Env. Eng., National Chung Hsing University, Taiwan

Introduction

Persulfate S₂O₈²⁻

Introduction (cont.)


 SO₄" scavenging due to the presence of excess Fe²⁺

Fe²⁺ + S₂O₈²⁻
$$\rightarrow$$
 Fe³⁺ + SO₄⁻⁻ + SO₄²⁻
k = (**1.2** × **10**¹ + **5.5** × **10**¹ [H⁺]) M⁻¹s⁻¹

SO₄⁻⁻ + Fe²⁺ \rightarrow Fe³⁺ + SO₄²⁻
k = **4.6** × **10**⁹ M⁻¹s⁻¹

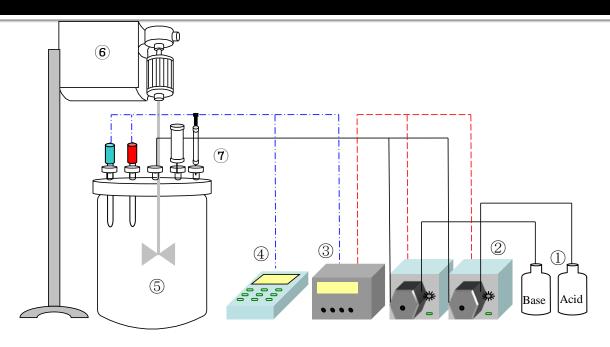
Introduction (cont.)

EDTA

Equi-molar EDTA/iron, using Hyperquad speciation and simulation software and formation constants provided by Shimizu et al. 2007

The Potential Capability:

The ligand-to-charge-transfer reduction of EDTA in simultaneously complexing Fe²⁺ and Fe³⁺ in solution for persulfate activation.


Objectives

1. The effects of Fe³⁺, EDTA, and EDTA/Fe³⁺ on persulfate

2. EDTA/Fe³⁺ activated persulfate oxidation of TCE at differing pH

3. The effects of EDTA/Fe³⁺ molar ratios and persulfate concentrations on the TCE degradation (at an optimum pH condition as determined in objective 2)

Metholodgy

Analysis:

TCE

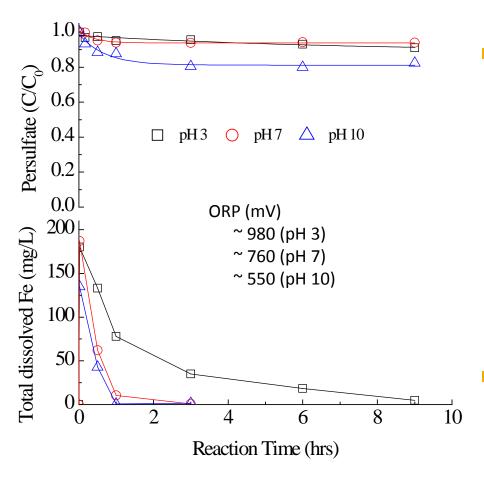
TOC

Persulfate

ORP

рΗ

- ① o.5 N NaOH oro.5 N H₂SO₄
- ② Cole-Parmer Masterflex C/L variablespeed tubing pump, 50 to 300 rpm, 115 VAC
- ③ pH/ORP control (SUNTEX pH/ORP controller, PC-310)


- pH meter (Thermo Orion^R Advanced Multichannel Benchtop ISE/pH/mV/ORP Meters, Orion 720A+)
- S Reactor (IWAKI, 1.36L)
- Mixer (SHIN KWANG DC-15, 80 to 1150 rpm)
- Gas-tight syringe, fitted with push-button luer lock valve 5 ml) and plastic syringe (60 ml)

Results and Discussion

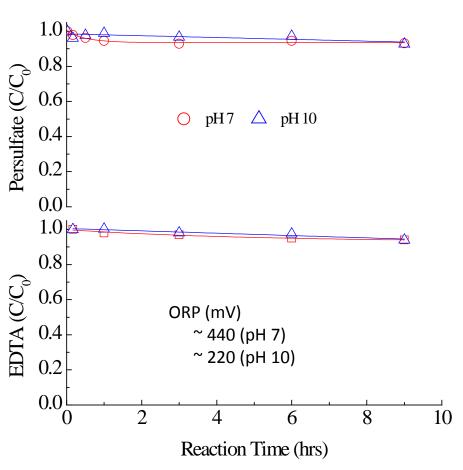
Objective 1

Fe³⁺, EDTA and EDTA/Fe³⁺ impacts on the persulfate decomposition

The S₂O₈²⁻/Fe³⁺ system

 $[S_2O_8^{2-}]_0 = 20 \text{ mM}; [Fe^{3+}]_0 = 3.58 \text{ mM}.$

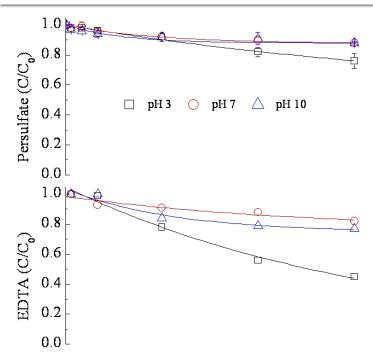
Persulfate reduction (i.e., < 20%) occurred under three pH conditions where iron precipitated out quickly, within 1 hr for pH 7 and 10 tests.


Fe³⁺ alone did not appear to appreciably reduce the persulfate concentration.

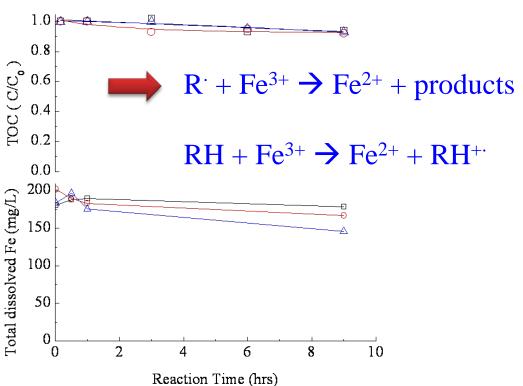
Note

$$SO_4^{--} + OH^- \rightarrow SO_4^{-2-} + HO^ k = (6.5 \pm 1.0) \times 10^7 \text{ M}^{-1}\text{s}^{-1}$$
 (Hayon et al., 1972)
 $SO_4^{--} + S_2O_8^{-2-} \rightarrow SO_4^{-2-} + S_2O_8^{--}$ $k = 6.1 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$ (Buxton et al., 1999)
 $HO^- + S_2O_8^{-2-} \rightarrow OH^- + S_2O_8^{--}$ $k = 1.2 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$ (Das, 2001)

- At pH 10, persulfate was reduced to a slightly greater extent than those under pH 3 and 7.
- Sulfate radicals formed upon persulfate activation can be converted to HO⁻, which may attack persulfate anion at a faster rate than attacked by SO_A⁻.


The S₂O₈²⁻/EDTA system

 EDTA did not yield a remarkable difference in the degradation of EDTA and persulfate at different pH.


 Direct oxidation of EDTA by persulfate anion is insignificant.

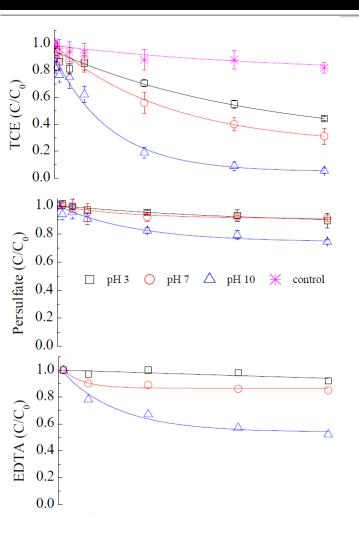
The S₂O₈²⁻/EDTA/Fe³⁺ system

 More persulfate degradation occurred when more EDTA degradation occurred.

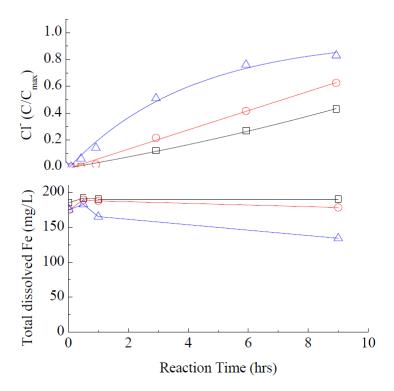
- Less than 5% of TOC is removed.
- Two types of radical chain mechanisms may be involved for recycling Fe²⁺.

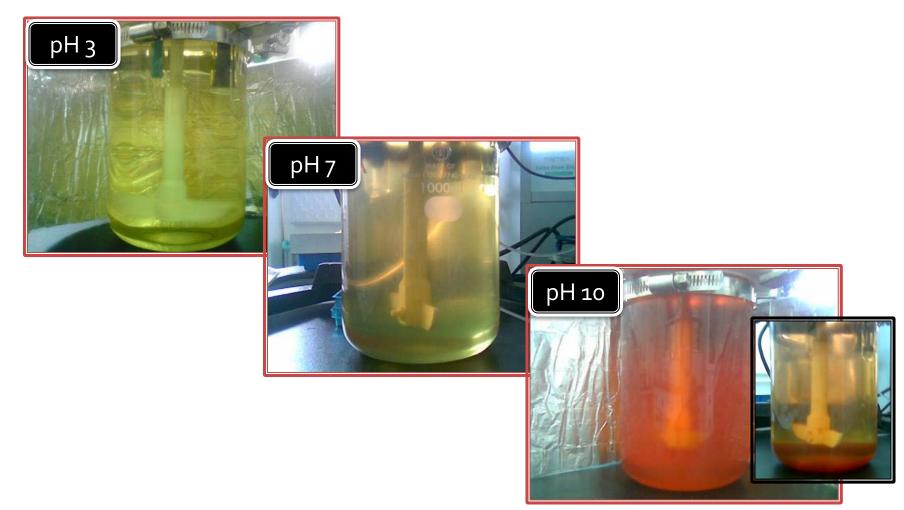
Results and Discussion

Objective 2


Influence of pH on EDTA/Fe³⁺ activated persulfate oxidation of TCE

The EDTA/TCE, EDTA/Fe³⁺/TCE or Fe³⁺/TCE systems


- TCE degradation (< 10%) was observed in the presence of EDTA/Fe³⁺ or Fe³⁺ without S₂O₈²⁻ at pH 3, 7 and 10.
- An additional control test investigating the effect of Fe³⁺ alone at pH 10 on TCE exhibited no reduction of TCE in solution and demonstrated that no TCE was adsorbed by insoluble ferric oxide precipitates.


 $RH + Fe^{3+} \rightarrow Fe^{2+} + RH^{+-}$

The S₂O₈²⁻/EDTA/Fe³⁺/TCE system

In general, increasing the pH leads to increases in $k_{\rm obs}$ for TCE, PS, Cl and EDTA.

Note

As opposed to acidic and neutral conditions, the EDTA/Fe complexes exist predominately in their protonated forms at pH 10 (e.g., Fe³+(OH)₂EDTA or Fe²+(OH)₂EDTA) which have relatively lower values of formation constants (i.e., log β) and exhibit thermodynamically unstable characteristics.

For example, Fe³⁺EDTA and Fe³⁺(OH)₂EDTA, as major species at pH 3 and 10, respectively, have formation constant values (log β) of 37.4 and 8.2.

Note (cont.)

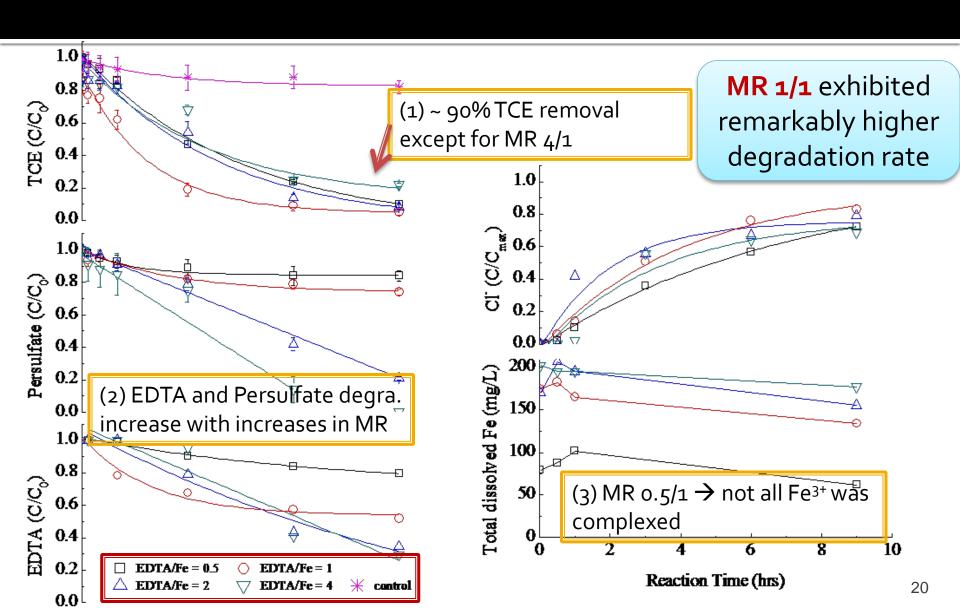
As soon as SO₄⁻⁻ is generated at pH 10, the sulfate radical can attack TCE and also undergo radical interconversion to form HO⁻.

>C=C< + HO'
$$\rightarrow$$
 >(OH)C-C<' (R')
>C=C< + SO₄" \rightarrow >·C-C<+ + SO₄²-
>·C-C<+ + H₂O \rightarrow >(OH)C-C<' (R') + H+

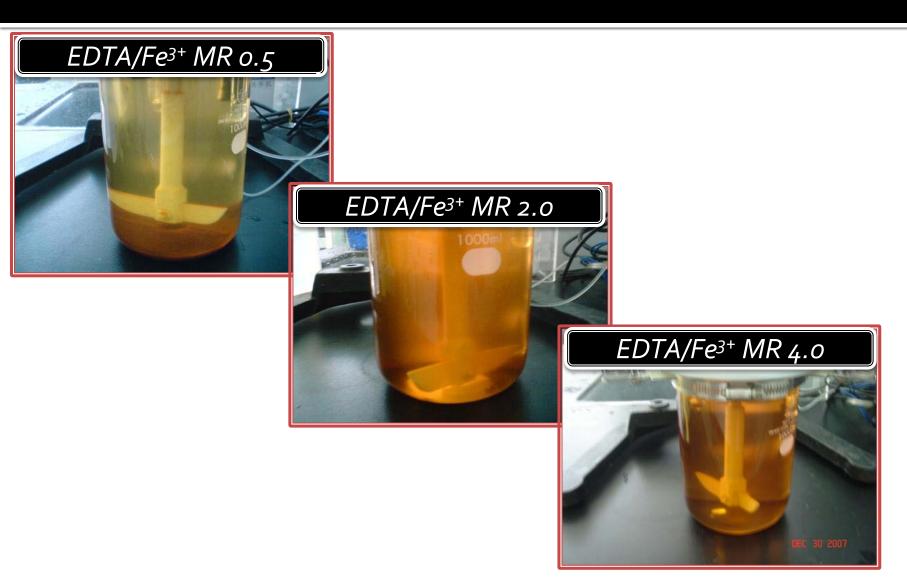
 The presence of TCE in the EDTA/Fe³⁺ activated persulfate system can induce faster persulfate and EDTA degradations.

 $R' + Fe^{3+} \rightarrow Fe^{2+} + products$

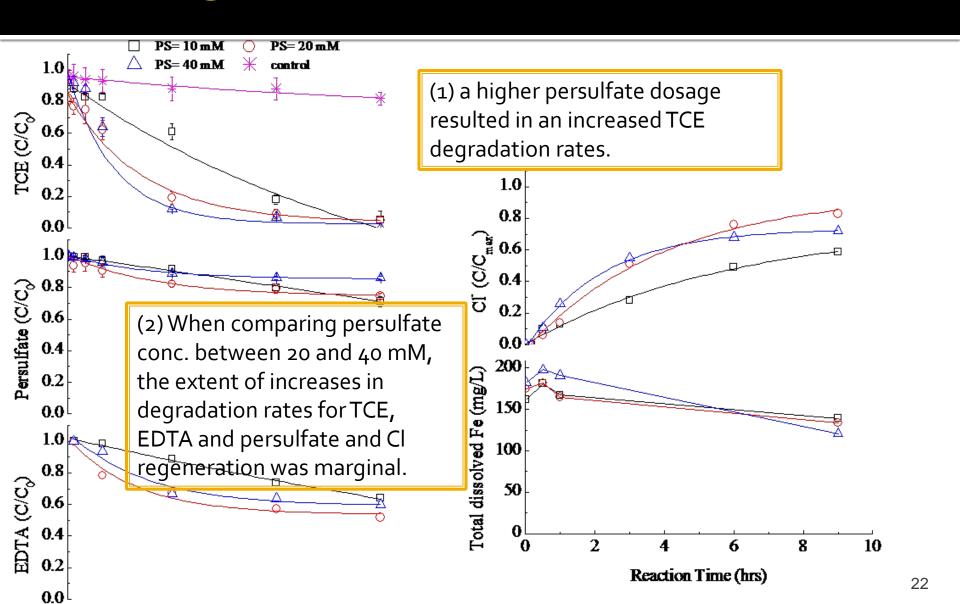
Pseudo-first-order kinetic kobs of TCE, persulfate, chloride and EDTA in the persulfate oxidation system


PS/EDTA/Fe ³⁺ /TCE Molar Ratio	рН	$k_{obs,TCE}$ (h^{-1}) (R^2)	$k_{obs,PS} (h^{-1}) (R^2)$	$k_{obs,Cl}$ (h^{-1}) (R^2)	$k_{obs,EDTA} \atop (h^{-1}) (R^2)$	k _{obs,TCE} / k _{obs,TCE} (no act. pH 7)
20/3.58/3.58/0	3		0.031 (0.99)		0.089 (0.99)	1/
	7		0.016 (0.91)		0.036 (0.96)	
	10		0.017 (0.87)		0.034 (0.94)	
0/0/0/0.3	3	0.025 (0.67)				
	7	0.018 (0.95)				
	10	0.025 (0.56)				
0/3.58/3.58/0.3	3	0.033 (0.76)				
	7	0.021 (0.84)				
	10	0.020 (0.41)				
0/0/3.58/0.3	10	0.031 (0.58)				
20/0/0/0.3	3	0.039 (0.95)	0.016 (0.94)	0.019 (0.98)		0.4
	7	0.094 (0.99)	0.009 (0.96)	0.103 (0.99)		1.0
	10	0.075 (0.98)	0.011 (0.93)	0.074 (0.99)		0.8
20/3.58/3.58/0.3	3	0.096 (0.95)	0.013 (0.97)	0.058 (0.98)	0.007 (0.79)	1.0
	7	0.142 (0.98)	0.013 (0.84)	0.101 (0.98)	0.022 (0.86)	1.5
	10	0.502 (0.97)	0.038 (0.92)	0.210 (0.99)	0.084 (0.94)	5.3
20/1.79/3.58/0.3	10	0.251 (0.99)	0.025 (0.90)	0.141 (0.99)	0.027 (0.99)	2.7
20/7.16/3.58/0.3		0.291 (0.99)	0.157 (0.97)	0.186 (0.95)	0.120 (0.98)	3.1
20/14.32/3.58/0.3		0.184 (0.96)	0.591 (0.86)	0.151 (0.93)	0.130 (0.93)	2.0
10/3.58/3.58/0.3	10	0.301 (0.98)	0.037 (0.99)	0.105 (0.98)	0.049 (0.99)	3.2
40/3.58/3.58/0.3		0.671 (0.96)	0.021 (0.92)	0.165 (0.96)	0.067 (0.92)	7.1

Results and Discussion


Objective 3

The effects of EDTA/Fe³⁺ molar ratios and persulfate concentrations on the TCE degradation at pH 10


EDTA/Fe³+ molar ratio

Note

Persulfate conc. (at MR 1/1)

Conclusion

 Application of an EDTA/Fe³⁺ mixture was successfully used to activate persulfate and degrade TCE in solution at various pH conditions.

2. EDTA is a promising chelating agent for the chelated iron activated persulfate system because it simultaneously complexes Fe²⁺ and Fe³⁺ via a redox-chain mechanism.

Conclusion (cont.)

3. It was theoretically demonstrated that an elevated pH could be a preferred pH condition in enhancing EDTA/Fe³⁺ activated persulfate oxidation of TCE.

4. The optimum pH of the EDTA/Fe³⁺ activated persulfate system was demonstrated to be alkaline conditions (pH 10), and an EDTA/Fe³⁺ molar ratio of 1/1 was observed to be an optimum ratio.

Thank You & Any Question?